Midterm - Linear Algebra I (2025-26) Time: 2.5 hours.

Attempt all questions. The total marks is 30.

- 1. Let V be a vector space and $A \subseteq V$. Suppose $\mathrm{Span}(A) = S$. Show that no proper subset of A generates S if and only if A is linearly independent. (recall that $A \subseteq V$ is said to be linearly independent if every finite subset of A is linearly independent) [5 marks]
- 2. Call a sequence (a_1, a_2, \cdots) of real numbers is a *Fibonacci sequence* if $a_n = a_{n-1} + a_{n-2}$ for all $n \geq 3$. Show that the set of all Fibonacci sequences forms a vector space over \mathbf{R} under component-wise addition and scalar multiplication defined in a natural way, and that it is isomorphic to \mathbf{R}^2 . [5 marks]
- 3. Let A be an $m \times n$ matrix over **R**. Let S be the subspace of \mathbf{R}^m generated by the columns of A. Let $W = \{\mathbf{x} \in \mathbf{R}^n : A\mathbf{x} = \mathbf{0}\}$. Show that

$$\dim(S) + \dim(\operatorname{Span}(W)) = n.$$
 [5 marks]

- 4. In the vector space \mathbb{R}^4 , find two different complements of the subspace $S = \{(x_1, x_2, x_3, x_4) : x_3 x_4 = 0\}$. [5 marks]
- 5. Let V be a vector space over \mathbf{R} . Suppose $T:V\to\mathbf{R}$ is a linear transformation, and let $\mathrm{null}(T)$ denote the null space of T. Prove that if $\mathbf{u}\in V$ is not in $\mathrm{null}(T)$ then

$$V = \text{null}(T) \oplus \{a\mathbf{u} : a \in \mathbf{R}\}.$$
 [5 marks]

6. Let T be the linear operator on \mathbb{R}^2 defined by

$$T(x_1, x_2) = (-x_2, x_1).$$

Find $[T]_{\mathcal{B}}$, the matrix of T in the ordered basis $\mathcal{B} = \{\mathbf{x}, \mathbf{y}\}$ where $\mathbf{x} = (1, 2)$ and $\mathbf{y} = (1, -1)$. [5 marks]